Hand movement and gesture recognition using Leap Motion Controller

Lin Shao*
Stanford EE 267, Virtual Reality,Course Report, Instructors: Gordon Wetzstein and Robert Konrad

Abstract

The novel device Leap Motion Controller provides an informative
representation of hands. We utilize tracking data through the API of
Leap Motion Controller to recognize hand movement and gestures.
Our experiment shows that our method based on Leap Motion Con-
troller tracking data can recognize hand gesture accurately when no
occlusion happens.

1 Introduction

Gesturing is a natural part of human communication and becomes
more and more important in AR/VR interaction. The Leap Motion
Controller is a new device developed for gesture interaction by Leap
Motion (https://www.leapmotion.com/). The device has a small di-
mension of 0.5x1.2x3 inches. To use the Leap Motion Controller,
the user need to connect it to a computer by USB. Then the users
put hands on top of the Leap Motion Controller. Figure 1 ' gives an
example of how to use the Leap Motion Controller.

Figure 1: Leap Motion Usage. The small object in the middle is
Leap Motion Controller connecting to the Mac on the right. Hand
on top of the Leap Motion is tracked and interacted with virtual
objects.

The Leap Motion Controller could detect palm and fingers move-
ments on top of it. The tracking data which contains the palm
and fingers’ position, direction, velocity could be accessed using its
SDK. According to [Weichert et al. 2013], the Leap Motion Con-
troller provides a detection accuracy of about 200 pm.The newest
version of Leap Motion Controller Orion currently do not provide
gesture recognition. We are trying to implement the gesture recog-
nition by ourselves.

2 Related Work

After Leap Motion first releases the Leap Motion Controller in
2013, researchers have started to analyze its performances. The
performance in selection task of leap motion controller is compared
with a common mouse device [Bachmann et al. 2015]. Fitts’ law
is introduced in the evaluation system. It indicates the Leap Motion
Controller’s performance in general computer pointing tasks is lim-
ited compared with a mouse device given the error rate of 7.8% for
Leap motion controller and 2.8% for the mouse device.

*e-mail:lins2 @stanford.edu
I'source:https://www.leapmotion.com/product/desktop?lang=en

The Leap Motion Controller has a wide range of application. It
has been used for stoke rehabilitation by people from The Intelli-
gent Computer Tutoring Group in the UniversIty [Bracegirdle et al.
2014]. Another important application is hand gesture recognitions.
Many gesture recognition methods have been put forward under
difference environments.

Marin et.al [Marin et al. 2015] works on hand gestures recognition
using Leap Motion Controller and kinect devices. Ad-hoc features
are built based on fingertips positions and orientations. These fea-
tures are then fed into a multi-class SVM classifier to recognize
their gestures. Depth features from the Kinect are also combined
with features from Leap Motion Controller to improve the recogni-
tion performances. They only focus on static gestures rather than
dynamic gestures.

Hand Motion Understanding system developed by [Cooper et al.
2011] utilize colour-coded glove to track hand movement. The
tracking system requires users to wear gloves which reduces the
user experiences.

We developed more complicated hand gestures recognition systems
which not only provide static gestures recognitions but also dy-
namic gesture recognitions. Only the Leap Motion Controller is
required. The users do not need other types of sensors to put on
their hands.

3 Approach

3.1 Device

Leap motion controller is new interactive devices mainly aiming at
hand gestures and finger position detection developed by Leap Mo-
tion. Figure 2 ? shows the internal structure of Leap Motion Con-
troller. There are three Infrared Light emmitters and two cameras
which received the IR lights.

800cm

IR LED IRLED IRLED
° ® o ® o
IR Camera IR Camera

Figure 2: Leap Motion Controller internal structure.

150em

300cm

3.2 Data

Leap motion has kept updating their SDK after the first release.
Currently the newest version is Orion Version 3.1.2. Leap motion
provides preprocessed data through their Application Programming
Interface. This data is accessed by a Frame object querying by per
frame. There are several properties a frame object contains in the
Orion version.

2source:http://www.mdpi.com/1424-8220/13/5/6380/htm


https://www.leapmotion.com/
https://www.leapmotion.com/product/desktop?lang=en
http://www.mdpi.com/1424-8220/13/5/6380/htm

e Palm position Pp.s, normal Py and velocity P,.
e Hand direction Pp.
e Fingertips position Fgo s, direction Fj, and velocity F; where

¢ starts from O to 4 representing thumb, index, middle,ring and
pinky respectively.

e Arm direction

Figure 3: Left: Palm tracking data. Right; Fingertips tracking data

Figure 3 > shows the tracking data which will be used in our exper-
iments. The palm’s position, normal and hand directions are shown
in left picture. The right picture shows the fingertips positions and
directions.

The origin tracking data is calculated in Leap Motion coordinate
systems. The Leap Motion Controller uses a right handed system
and millimeters as the unit. We implemented our demo based on
Unity(https://unity3d.com/). The Unity uses a left hand system and
meters as the unit. So the z-coordinates are opposite in Leap Mo-
tion Controller coordinate system and Unity system. The Orion
helps solves these problems. The frame object accessed through
LeapProvider is in unity coordinate systems and use meters as the
unit.

3.3 Features

Based on previous raw data we collected from Leap Motion Con-
troller API, we starts to build features to recognize hand gestures.
These features could mainly be divided into two parts. One parts
are associated with static gestures containing the positions and di-
rections. The others are used to identify dynamic gestures.

3.3.1 Static Gesture Features

Features for static gestures are mainly built based on palm and fin-
gers relative distances. We calculated two types of distances. One
type is distances between fingertips F};,s and palm center Pp,s de-
noted by D;. The other type is distances between two fingers which
are adjacent. For example distance between thumb and index,
distance between index Dpiand middle denoted by D12 Figure 5
shows examples of static gestures we could effectively recoginize.
We have two standard gestures shown in Figure 4 where the dis-
tance values are used as parameters to distinguish different static
gestures

The other gesture features are built based on distances between fin-
gers and palms. The distance between thumb and index is used to
identify the OK gestures. The distance between index and middle
finger is used to distinguish V gesture and Index and Middle point-
ing gesture. The rest gestures simply combined these two standard
gestures. For example the index L gestures on the top most in Fig-
ure 5 are index and thumb extended and the rest fingers bent.

3pictures source:https://developer.leapmotion.com/documentation

Figure 4: Left: fingers all extended. Right: fist gesture

Figure 5: Examples of static gestures. The first line gestures are
index L gestures, ILY gestures, fist. The second line gestures are
Thumb up, Index pointing, Index and middle pointing. The third
line gestures are V gesture, Ok gesture, Index and Middle L gesture.

3.3.2 Dynamic Gesture Feature

The dynamic gesture features are easily distinguished from static
gestures features. We calculate the total value of velocity magnitude
among fingers and palm. If the total movement value is greater than
auser-defined threshold, we believe the hand is moving. Otherwise,
we starts to recognize the static hand gestures.

Dynamic Gesture features mainly use the velocity of fingertips and
palm to detect the movement patterns. Compared with the static
gestures, dynamic gestures are much more complicated. We starts
from the global movement and then go through the details of the fin-
gers’ movement. From the global movement, we try to detect hand
translation movement, hand rotation movement, hand circle move-
ment. Then we consider the fingers’ movement. Since there are so
many possible movement and will focus on the movement of index
finger which is very useful in communication and interactions.

Hand Translation Feature

Translation feature indicates fingers and palm are moving together
straightly without rotation. We calculate the cross correlation of
velocity vectors between fingers F), and palm P, for all fingers. If
the absolute values of these cross correlations are greater than 0.95,
we recognize that the hands are moving straightly.

Hand Rotation Feature

Palm rotation features contains two parts. One is the difference of
current palm normal P} and previous palm normal P]t\,_1 defined
by D Py . The other parts is the angle between difference of current
palm D Py and hand direction Pp. We then calculate the cross
correlation of D Py and hand direction Pp


https://unity3d.com/
https://developer.leapmotion.com/documentation

Hand Circle Features

Hand circe feature indicates the palm is drawing a great circle.
Same to hand rotation features, we calculate the first order differ-
ence between palm normals. Also make sure the hand is not rotat-
ing.

Index Key Tapping and Index Swipe

Figure 6 * shows examples of index key tapping and index swipe.
Index key tapping and index swipe gestures are built based on in-
dex pointing static gesture. The difference between key tapping and
swipe is the index only moves vertically for key tapping and moves
horizontally for swipe. We then calculate the cross correlation be-
tween the direction of index finger velocity F.} and the palm normal
Py . If the absolute cross correlation is greater than a threshold for
example 0.94 we believe that the dynamic gesture is index key tap-
ping. It indicates the movement of index is parallel with the palm
norm. If the absolute cross correlation is smaller than a thresh-
old for example 0.2, we believe that the dynamic gestures is index
swipe. Because it indicates the movement of index is orthogonal to
the palm normal.

Figure 6: Left: index key tapping. Right : index swipe

Index Circling Direction Features

Figure 7° We also try to predict the circle direction whether it is
clockwise or counter clockwise when the index is moving along a
circle. We first calculate the first order difference of the index fin-
ger velocity between F., and Fvl(t_ 1y denoted by DF), denoted by

CP. Then the cross product of FL and DFE}, is generated. The
direction of cross product are different between clockwise circle
and counter clockwise circle. We simply calculated the sign of the
cross correlation result between C'P and the direction of hand. If
the sign is positive, circle moves clockwise, otherwise circle direc-
tion is counter clockwise.

Figure 7: Example of index circling

4 Evaluation and Failure Cases Analysis

When hands are correctly tracked, our methods could accurately
detect the hand gestures. However there are some cases when the
Leap Motion Controller fails to detect all the fingers. We analysis
the failure cases to find out factors leading to misclassification.

“pictures source:https://developer.leapmotion.com/documentation
Spictures source:https://developer.leapmotion.com/documentation

Self-Occlusion

Figure 8: Example of self occlusion

Figure 8 shows an example where the fingers are self occluded by
the palm. In that picture the Leap Motion Controller is put below
the palm and can not get full data about the fingers. It predicts a
gesture which is not correct. The Leap Motion Controller use IR to
gather hand information in the space. When important fingers or
regions are self-occluded by other hand parts, tracking data quality
will be greatly reduced.

Distal phalanges

Distal phalanges

Intermediate phalanges

Proximal phalanges

Metacarpals

0-length thumb metacarpal

Figure 9: Example of hand skeleton

Skeletal Tracking Model is a standard hand model provided by
Leap Motion. It simulates the actual hand skeleton.Figure 9° shows
the picture of hand skeleton.

In our experiments, we find out the tracking data of distal phalanges
of middle finger and pinky finger is not stable. Figure 10 gives two
examples of wrong tracking of distal phalanges. Left image shows
the orientation of middle finger’s distal phalanges not bent while in
the real hand it it straight. Right image shows the pinky is bent in

Spictures source:https://developer.leapmotion.com/documentation/objc/
devguide/Intro_Skeleton_APIhtml?proglang=objc


https://developer.leapmotion.com/documentation
https://developer.leapmotion.com/documentation
https://developer.leapmotion.com/documentation/objc/devguide/Intro_Skeleton_API.html?proglang=objc
https://developer.leapmotion.com/documentation/objc/devguide/Intro_Skeleton_API.html?proglang=objc

real hand while it is straight in the Leap Motion Controller tracking
data. Distal phalange of index finger is much stable. Therefore
we should avoid use the tracking data of middle and pinky finger’s
distal phalanges.

Figure 10: Example of wrong distal phalanges tracking

Detection Region

Currently the detection region for Leap Motion Controller is still
small. Hand tracking data becomes unstable when hands are near
the detection region boundaries.

Parameters

In the above feature descriptors, some parameters are associated
with real hand sizes. If the hand sizes and corresponding parame-
ters are not matching, failure cases happen.

Error accumulation

For hand movement gestures, we also use first order differences.
These values are less accurate and less robust due to error accumu-
lation.

5 Applications

One of the applications is to use these gestures to navigations in
the Virtual Reality Environment. In our demo, we adopt three dif-
ferent gestures with left and right hands to represent moving for-
ward/backward, turn left/right, roll clockwise/counter-clockwise.
Using these gestures the users could control the movement instead
of using some extra control devices for example control panel. Fig-
ure 11 shows examples of navigation in our demo.

6 Hand interaction

Hand interaction is implemented based on unityS. In unity5S the
interaction between objects require at least one object is set to be
rigidbody. In the interaction process, the first part is to detect when
the two objects begin to touch each others. Unity 5 provides differ-
ent collide region. We could choose the most accurate type when
hand are touching the object we will receive a touching signal.
However it requires a large amounts of calculation per frame and
will reduce the speed and user experiences. We use simple cubes as
the rigid body objects in our demo. Basic physical laws are already
implemented to rigid body objects in unity5.

Figure 11: Top left: Starting situation. The first line: Turn left,
Turn right. The second line: Move forward. Moving backward.
The last line: Roll clockwise, Roll counter clockwise

7 Discussion

In our experiments, self occlusion usually leads to misclassification.
The self occlusion is a common problem in all hand recognition
systems for example the Kinect detection system which provides
the depth information.

We therefore try to deal with such problems. We could use more
than one Leap Motion Controllers to provide more accurately and
continuously hand tracking data. Two Leap Motion Controllers
could be put far from each others with nearly orthogonal angle.
Then tracking data from two different Leap Motion Controllers is
transformed into the same world space coordinates.

We assign different priorities to these two types of tracking data.
When a hand is self-occluded from a Leap Motion Controller’s
view, we reduce the priority of the tracking data from that Leap
Motion Controller and trust the other Leap Motion Controller. Due
to the orthogonal angle between these two Leap Motion Controller,
the other Leap Motion Controller could recognize the current hand
since the hand is no longer self-occluded from the new Leap Mo-
tion Controller’s view. In this environment, we could implement
more complicated and accurate hand movement tracking system.

Acknowledgements

I would like to thank the wonderful teaching team of the course.
Many thanks to Gordon Wetzstein and Robert Konrad for amazing
lectures and helpful project discussion.

References

BACHMANN, D., WEICHERT, F., AND RINKENAUER, G. 2015.
Evaluation of the leap motion controller as a new contact-free
pointing device. Sensors 15, 1, 214.



BRACEGIRDLE, A., MITROVIC, S. T., AND MATHEWS, M., 2014.
Investigating the usability of the leap motion controller: Gesture-
based interaction with a 3d virtual environment.

COOPER, H., HOLT, B., AND BOWDEN, R. 2011. Sign language
recognition. In Visual Analysis of Humans: Looking at Peo-
ple, T. B. Moeslund, A. Hilton, V. Kriiger, and L. Sigal, Eds.
Springer, Oct., ch. 27, 539 — 562.

MARIN, G., DOMINIO, F., AND ZANUTTIGH, P. 2015. Hand
gesture recognition with jointly calibrated leap motion and depth
sensor. Multimedia Tools and Applications, 1-25.

WEICHERT, F., BACHMANN, D., RUDAK, B., AND FISSELER, D.
2013. Analysis of the accuracy and robustness of the leap motion
controller. Sensors 13,5, 6380.



